
AD-A261 663 (D

Fast Mutual Exclusion for Uniprocessors

Brian N. Bershad David D. Redell* John R. Ellis*

October 1992
CMU-CS-92-183

DTIC
ELECTE
MAR 191993

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

♦Digital Equipment Corporation O^
Systems Research Center Q,.

130 Lytton Avenue ^O
Palo Alto, CA 94301 CM -"'

IDS

og
Presented at the Fifth Symposium on Architectural Support for Progranming 1^ ^^

Languages and Operating Systems, ASPLOS V, Seville, Spain. October 1992. CO gS

This research was sponsored in part by the Defense Advanced Research Projects Agency, Information Science
aid Technology Office, under the title "Research on Parallel Computing", ARPA Order No. 7330, issued by
DARPA/CMO under Contract MDA972-90-C-0O35, by the Open Software Foundation (OSF), and by a grant from
the Digital Equipment Corporation. B. Bershad was partially supported by a National Science Foundation
Presidential Young Investigator Award.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of DARPA, OSF, DEC, the NSF, or the U.S.
government.

rflSTRIBlmoN STATEfiBSW^

Approved foi public releom]
Distribution Unlimited

Keywords: Mutual exclusion, architecture, performance, microkernels, memory system, threads

1

Abstract

In this paper we describe restartable atomic sequences, an optimistic
mechanism for implementing simple atomic operations (such as
Test-and-Set) on a uniprocessor. A thread that is suspended within a
restartable atomic sequence is resumed by the operating system at the
beginning of the sequence, rather than at the point of suspension. This
guarantees that the thread eventually executes the sequence atomically. A
restartable atomic sequence has significantly less overhead than other
software-based synchronization mechanisms, such as kernel emulation or
software reservation. Consequently, it is an attractive alternative for use
on uniprocessors that do not support atomic operations. Even on
processors that do support atomic operations in hardware, restartable
atomic sequences can have lower overhead.

We describe different implementations of restartable atomic sequences
for the Mach 3.0 and Taos operating systems. These systems' thread
management packages rely on atomic operations to implement higher-
level mutual exclusion facilities. We show that improving the
perfonnance of low-level atomic operations, and therefore mutual
exclusion mechanisms, improves application performance.

i ■-■ gp'

Accesion For

NTIS CRA&I
DTiC TAB
U announced
J Jitdication

By
Dkt ibution/

D

Availability Codes

Avail and/or
Special

Fast Mutual Exclusion for Uniprocessors

Brian N. Bershad

School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

David D. Redell and John R. Ellis

Digital Equipment Corporation
Systems Research Center

130 Lytton Avenue
Palo Alto, CA 94301

Abstract
In this paper we describe restartable atomic sequences,
an optimistic mechanism for implementing simple
atomic operations (such as Test-And-Set) on a unipro-
cessor. A thread that .s suspended within a restartable
atomic sequence is resumed by the operating sys-
tem at the beginning of the sequence, rather than
at the point of suspension. This guarantees that the
thread eventually executes the sequence atomically. A
restartable atomic sequence has significantly less over-
head than other software-based synchronization mech-
anisms, such as kernel emulation or software reserva-
tion. Consequently, it is an attractive alternative for
use on uniprocessors that do not support atomic op-
erations. Even on processors that do support atomic
operations in hardware, restartable atomic sequences
can have lower overhead.

We describe different implementations of restartable
atomic sequences for the Mach 3.0 and Taos operating
systems. These systems' thread management packages

This research was sponsored in part by The Defense Ad-
vanced Research Projects Agency, Information Science and Tech-
nology Office, under the title "Research on Parallel Computing",
ARPA Order No. 7330, issued by DARPA/CMO under Contract
MDA972-90-C-0035, by the Open Software Foundation (OSF),
and by a grant from the Digital Equipment Corporation (DEC).
Bershad was partially supported by a National Science Foun-
dation Presidential Young Investigator Award. The views and
conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of DARPA, OSF, DEC, the NSF, or
the U.S. government.

rely on atomic operations to implement higher-level
mutual exclusion facilities. We show that improving
the performance of low-level atomic operations, and
therefore mutual exclusion mechanisms, improves ap-
plication performance.

1 Introduction
In this paper we describe restartable atomic sequences,
an optimistic mechanism for implementing atomic op-
erations on a uniprocessor. Our approach assumes that
short, atomic sequences are rarely interrupted. If a
thread is interrupted during an atomic sequence, we
rely on a recovery mechanism provided by the ker-
nel that resumes the thread at the beginning of the
sequence. We have implemented restartable atomic
sequences in the Mach 3.0 [Accetta et al. 86] and
Taos [Thacker et al. 88] operating systems, using a dif-
ferent method in each. We show that restartable atomic
sequences are significantly more efficient than other
software techniques. We have measured performance
improvements of up to 50% for some applications on the
MIPS R3000-based [Kane 87] DECstation 5000/200,
which does not have hardware support for atomic op-
erations. In addition, we show that restartable atomic
sequences outperform hardware mechanisms on proces-
sors that do provide explicit support for atomic opera-
tions.

1.1 Motivation

Multithreaded programs use mutual exclusion to guar-
antee consistency of shared data structures. Mutual ex-
clusion mechanisms such as P, ^[Dijkstra 68a] and ac-
quire.muiex, release.mulex [Birreil 91] are implemented
using lower-level operations such as Test-And-Set that
grant one of several threads mutually exclusive access
to some data structure. Even on a uniprocessor, mutual

exclusion is necessary to protect shared data against
an interleaved thread schedule. Interleaving can oc-
cur when a thread is suspended (due to a synchronous
fault or an asynchronous preemption), or when a thread
blocks (due to the thread voluntarily relinquishing the
processor).

Efficient mutual exclusion mechanisms are becoming
increasingly important on uniprocessors for two rea-
sons. First, modern applications use multiple threads
as a program structuring device, as a mechanism for
portability to multiprocessors, and as a way to man-
age I/O and server concurrency even when no true
CPU parallelism is available. Second, many operating
systems today are built on top of a microkernel that
supports relatively few services; for example thread
scheduling, virtual memory and interprocess commu-
nication [Mullender et al. 90, Cheriton 88, Rozier et al.
88, Accetta et al. 86, Thacker et rJ. 88]. Other services
such as the file system and networking are implemented
as multithreaded user-level applications. The micro-
kernel approach exposes the performance of a system's
mutual exclusion primitives; even single threaded pro-
grams rely on basic operating system services that are
implemented outside the kernel using multiple threads.
The performance of all applications is therefore ulti-
mately influenced by the performance of the underlying
mutual exclusion mechanisms.

The mechanisms that have been used to implement
atomic operations on a uniprocessor (i.e., those de-
scribed in every undergraduate operating systems text-
book) can be characterized aa pessimistic. That is,
their design assumes that atomicity may be violated
at any moment (e.g., with an interrupt), and therefore
guards against this potential violation every time the
atomic operation is executed. This approach, though,
can incur a high overhead that affects the performance
of applications relying on mutual exclusion, either di-
rectly or indirectly.

In contrast, the optimistic mechanism described in
this paper assumes thaf atomic sequences are rarely
interrupted, and adopts an inexpensive solution for this
assumed common case. We show that this assumption
is both accurate, and effective at reducing the overhead
of mutual exclusion.

1.2 The rest of this paper

In the next section we describe restartable atomic se-
quences after reviewing several pessimistic techniques
for ensuring mutual exclusion on a uniprocessor. In
Section 3 we discuss implementations of restartable
atomic sequences for the Mach and Taos operating sys-
tems. In Section 4 we discuss some of the kernel de-
sign issues that arise when implementing restartable
atomic sequences. In Section 5 we show the perfor-
mance impact of using restartable atomic sequences in
the Mrch operating system. In Section 6 we show that
restartable atomic sequences have less overhead than
equivalent hardware mechanisms on several processor

architectures. In Section 7 we dLcuss related work. In
Section 8 we present our conclusions.

2 Implementing mutual exclu-
sion on a uniprocessor

This section describes four techniques for implementing
atomic primitives suitable for use by mutual elusion
mechanisms on a uniprocessor. We concen. tie on the
specific atomic primitive Test-And-Set, although other
primitives, such as Fetch-And-Add, Load-Lmkcd/Store-
Conditional, and Memory-Register-Exchange could be
similarly constructed. Each of these primitives per-
forms an atomic read-modify-write of a single mem-
ory location. Three of the techniques, memory inter-
locked instructions, software reservation and kernel em-
ulation, are pessimistic. The fourth, restartable atomic
sequences, is based on the optimistic approach.

2.1 Memory-interlocked instructions

Memory-interlocked instructions (or instruction se-
quences) require special hardware support from the
processor and bus to ensure that a given memory loca-
tion can be read, modified and written without inter-
ruption. Memory-interlocked instructions are primarily
intended to support multiprocessing, but can be used
on uniprocessor systems as well. Unfortunately, not
all processors support memory-interlocked instructions,
and many that do, do so reluctantly; i.e., the cycle time
for an interlocked access is several times greater than
that for a non-interlocked access. The reasons for the
higher cost are increased complexity [Intel860 89], an
overly rich set of atomic operations [Leonard 87, In-
tel386 90], support for atomic updates on arbitrary bit
boundaries [Leonard 87], and the fact that atomic op-
erations may bypass the on-chip cache [Motorola 88100
88]. A good survey of memory-interlocked instructions
and their implementations can be found in [Glew &c
Hwu 91].

2.2 Software reservation

Atomic operations can also be constructed using Soft-
ware reservation algorithms, such as Dekker's [Djkstra
68b], Peterson's [Peterson 81] or Lamport's [Lamport
87]. Roughly speaking, with software reservation algo-
rithms, a thread must register its intent to perform an
atomic operation and then wait until no other thread
has registered a similar intent before proceeding. Wc
use Lamport's fast mutual exclusion algorithm to eval-
uate software reservation schemes since it has been
proven cor.ect and shown to be optimal. If one is will-
ing lo pui an upper bound on ihe duration of the crit-
ical "'"tuen, then it is possible to nnpiement multipro-
cessor mutual exclusion vith few« instructions than
required by Lamport's algorithm. Such a limitation,

though, is generally not feasible on a multiprocessor,
and would be nearly impossible on a uniprocessor.

In Lamport's algorithm, shown in Figure 1, each
thread has a unique identifier t which is used to place
reservations into the variable x, and to indicate own-
ership of the lock via the variable y. In the normal
case (no contention, no collision), Lamport's algorithm
requires two loads and five stores, executing in order
the lines [1,2,3,9,10,19,21,22]. If a thread reaches line
3, though, and finds that the lock is held by another
thread, there is contention, and the thread must wait
until the lock is released. The array 6 is used to resolve
collisions, which occur whenever two or more threads
find that the lock is free at line 3 and proceed to line 9
simultaneously (or through an interleaved schedule on
a uniprocessor). A collision by n threads will be de-
tected at line 10 by n - 1 of them; those n - 1 will enter
the loop at line 12 and wait until the collisions have
settled out (lines 12 through 15). The await used at
lines 5, 12 and 14 is necessary when there is contention
or collision, and can be implemented on a uniprocessor
by having the awaiting thread yield its processor to the
scheduler.

function Meta-Ato«ic-Te8t-And-Set(var p: integer)
:integer;

var result: integer;
begin

[lines 1-18 fron Lamport's algorithm]
if (p - 0) then

result :■ Oj
P - i:

else
result :■ 1;

end;
[lines 21-22 from Lamport's algorithm]

return result;
end Meta-Atomic-Test-And-Set;

procedure AtonicClear(var p: integer)
begin

p :- 0;
end AtomicClear;

Figure 2: Bundled Tesi-And-Set using Lamport's algo-
rithm.

start!
1 b[i] :» true;
2 x :- i;
3 if y <> 0 then { Contention }
4 b[i] :- false;
5 await (y ■ 0);
6 goto start;

and;

9 y :- i;
iO if x <> i then { Collision }
11 b[i] :- false;
12 for j :» 1 to N await (b[j] » false);
13 if y <> i then
14 await (y ■ 0)
15 goto start;
16 end;
17 end;
18
19 CRITICAL SECTION
20
21 y :- 0;
22 b[i] := false:

Figure 1: Lamport's fast mutual exclusion algorithm.

Although reservation-based algorithms such as Lam-
port's are correct in principle, they are in practice un-
wieldy, having storage requirements that are 0{n x I),
where n is the maximum number of threads that may
be simultaneously active, and / is the maximum num-
ber of synchronization objects.

The space requirement can be reduced to O(n) with
a single "meta-atomic object" which is used to control
access to all "regular atomic objects." In this case,
the critical section at line 19 in Figure 1 becomes a

code sequence to access the "regular atomic object."
For example, we can bundle the reservation algorithm
inside a Test-And-Set procedure (see Figure 2).

Even though bundling reduces the space requirement
for an atomic Test-And-Set variable to one bit (space
for the meta variables x, y, and b can be counted as
constant system overhead), it increases the number of
memory accesses to enter and exit a critical section
to at least three loads and seven stores. Additionally,
bundling serializes all atomic operations, even those
for unrelated synchronization objects. On a uniproces-
sor, for example, a thread preempted during the func-
tion Meta-Atomic-Test-And-Set would prevent other
threads from executing any atomic operation.

2.3 Kernel emulation

Memory-interlocked instructions and software reserva-
tion protocols work on both uniprocessors and multi-
processors. A strictly uniprocessor solution has the ker-
nel export its ability to perform atomic operations to
applications by means of a system call that does an
atomic read-modify-write on a memory location in the
caller's address space. In the kernel, processor inter-
rupts are uisabled during the execution of the atomic
operation.

Although kernel emulation requires no special hard-
ware, its runtime cost is high. The kernel must be
invoked on every synchronization operation, requiring
that a trap be fielded and dispatched, state saved and
restored, and arguments checked. On the MIPS R3000,
for example, building a Test-And-Set with kernel emu-
lation takes about 100 instructions.

function Test-And-SetCvar p: integer): integer;
var result: integer;
begin

1 result !■ 1;
2 BEGIN RESTARTABLE ATONIC SEQUENCE
3 if p « 1 then
4 result :- Oj
5 els«
6 p :- 1;
7 end;
8 END RESTARTABLE ATONIC SEQUENCE
9 return result;

end Test-And-Set;

Figure 3: Generic Test-And-Set using a restartable
atomic sequence.

Implementing
atomic sequences

restartable

Restartable atomic sequences require kernel support to
ensure that a suspended thread is resumed at the be-
ginning of the sequence. This section describes two
strategies for implementing that kernel support. The
first strategy, used by the Mach 3.0 kernel, places
a restartable atomic sequence at a designated code
range within a program. The second strategy, used
by the Taos kernel, constructs restartable atomic se-
quences out of unique code fragments against which a
suspended thread's current instruction stream is com-
pared. Both strategies have been implemented in ver-
sions of the operating systems running on the MIPS
R3000-based DECstation 5000/200.

2.4 Restartable atomic sequences

The three mechanisms described so far are pessimistic.
A memory-interlocked instruction implicitly delays in-
terrupts until the instruction completes; a software
reservation algorithm explicitly guards against arbi-
trary interleaving; kernel emulation explicitly disables
interrupts during operations that must execute atomi-
cally.

On a uniprocessor, an atomic read-modify-write op-
eration can be performed optimistically. Instead of us-
ing a mechanism that guards against interrupts, we can
instead recognize when an interrupt occurs and recover.
For any read-modify-write sequence, the recovery pro-
cess :8 straightforward: restart the sequence. In this
way, when the sequence eventually completes, it will
have completed without interruption, i.e., atomically.

An atomic Test-And-Set operation is shown in Fig-
ure 3. As long as statements 3 through 7 execute with-
out interruption on a uniprocessor, this code will atom-
ically read and write the variable p. If an interrupt oc-
curs that would allow another thread to possibly mod-
ify the variable p, then the interrupted thread must
resume execution at line 3 when it is next scheduled.
The corresponding clear operation can store a zero into
p as long as single-word memory accesses execute atom-
ically.

Restartable atomic sequences are attractive because
they do not not require hardware support, have a short
code path with one load and one store per atomic read-
modify-write (in the common case of no interruptions),
and do not involve the kernel on every atomic opera-
tion. Only when an atomic instruction sequence might
not have executed atomically is it necessary to perform
a recovery action to ensure atomicity. In the next sec-
tion we describe two recovery strategies.

3.1 Explicit registration in Mach

The Mach operating system implements a strategy
based on explicit registration. The kernel keeps track
of each address space's restartable atomic sequence. If
a thread is suspended within that sequence, it is re-
sumed at the beginning. An application registers the
starting address and length of the sequence with the
kernel. The registration is done automatically during
program initialization by C-Threads [Cooper & Draves
88], Mach's thread management package.

An address space may register only one restartable
atomic sequence at a time. This restriction simplifies
the kernel's task of determining if a suspended thread
was executing within a restartable sequence. When
the thread management system attempts to register
a restartable atomic sequence with a kernel that does
not support such sequences, the registration fails. In
response to the failure, the thread management sys-
tem overwrites the restartable atomic sequence with
code that uses a conventionarmechanism. Overwrit-
ing ensures binary portability between uniprocessors
and multiprocessors, and binary compatibility with
older kernels that do not support restartable atomic
sequences.

' A registered Test-And-Set function can be imple-
mented with a single four-word (and four cycle) se-
quence on a load/store RISC architecture. For exam-
ple, the assembly code for this function on a MIPS
R3000 is shown in Figure 4. Line 1 loads the current
value of the Test-And-Set location, passed in register
aO, into the return value register, vO. Line 2 loads a
temporary register with the value 1. Line 3 returns
control back to the caller. Line 4, which executes in
the branch delay slot following the return, stores a 1
into the Test-And-Set location. Lines 1-4 form the
restartable atomic sequence: when the store finally oc-
curs at the end of line 4, no other thread will have
executed since the thread's most recent load at line 1.

i Test-And-Set procedure.
Test-And-Set:
1 lv vO, (aO) fvO • contents of aO
2 li to, 1 tteaporary to gets 1
3 j ra treturn to caller, result in vO
4 sa to, (aO) «store 1 in Test-And-Set

«location

Figure 4: Restartable Test-And-Set procedure using ex-
plicit registration in Mach 3.0.

Costs of explicit registration

There are two runtime costs associated with explicit
registration. Because the kernel identifies restartable
atomic sequences by a single PC range per address
space, they cannot be inlined. The inability to inline
slightly increases the overhead of atomic operations be-
cause of the cost of subroutine linkage.

The second cost comes from having to check the re-
turn PC whenever a thread is suspended. Although
this test adds a few tens of cycles to the kernel's thread
suspension path (which is already several hundred cy-
cles long), thread suspensions occur far less often than
atomic operations, making the additional scheduling
overhead worthwhile.

3.2 Designated sequences in Taos

Taos uses designated code sequences to recognize when
a thread has been suspended within an atomic se-
quence. The kernel compares the instruction stream
of a suspended thread against a designated sequence.
The comparison allows restartable atomic sequences to
occur anywhere in a program, enabling inlinirt and
eliminating the branch overhead of explicit registration.

The kernel's comparison must recognize every inter-
rupted sequence and reject any other similar looking
sequence since mistakenly changing the PC in such a
situation could cause code to malfunction. Taos uses
a two-stage check to unambiguously recognize atomic
sequences.

The first stage is a fast test which rejects most in-
terrupted code sequences that are not restartable. The
opcode of the suspended instruction is used as an in-
dex into a hash table containing instructions eligible to
appear in a restartable atomic sequence. If the opcode
matches the contents of the indexed entry, the test pro-
ceeds to the second stage. The first check is quite fast,
yet succeeds in rejecting a large majority of the non-
atomic cases and none of the atomic ones. The few that
pass this check, comprising all of the suspended atomic
sequences, plus a much larger number of false alarms,
move on to the second stage of the check.

The second stage uses another table, again indexed
by opcode, to determine the expected offset from the
suspended instruction to a "landmark" no-op. The
landmark no-op is never emitted by the compiler un-

der normal circumstances, but is present within every
restartable atomic sequence. On the R3000, the land-
mark no-op is a non-destructive register move which
fills an otherwise useless branch delay slot. If the sec-
ond stage finds the landmark in the expected position,
it recognizes the sequence as atomic and restarts it.
Otherwise, the sequence is rejected as a false alarm.

The designated sequence for acquiring a mutex is
shown in Figure 5. The sequence is optimistic in two
distinct senses: it assumes both that it will not be in-
terrupted, and that it will find the mutex unlocked.
Both assumptions model the frequent case, but either
or both can fail independently. The sequence is es-
sentially a Test-And-Set of an entire word, where the
unlocked value of the mutex is 0, and the locked-but-
no-waiters value is 0x80000000. Typically, the sequence
finds that the mutex has the former value and atomi-
cally sets it to the latter. The infrequent case is handled
with an out-of-line kernel call via SlowAcquire. The
sequence for mutex release (Test-And-Clear) is similar.

1 1B VO, (aO) «get value of mutex
2 lui tO, 8000H »temporary t0=0x80000000
3 bne vO, SlovAcquire «branch if not common case
4 no-op «special landmark value
5 sa tO, (aO) «store locked value

Figure 5: A restartable atomic sequence for mutex ac-
quisition using an inlined designated sequence.

Costs of designated sequences

Designated sequences have several costs. There is the
measurable cost of the two-stage check on every thread
switch. The check is currently implemented in Mod-
ula2+, the language in which the operating system is
written [Rovner et al. 85]. As with Mach's explicit reg-
istration, the check adds a few tens of instructions to
the kernel's context switch path (counting instructions
in the generated code shows that the check adds about
2 /isecs on a MIPS R3000 in the common case).

Unlike explicit registration, which uses only one se-
quence that can be overwritten at runtime if restartable
atomic sequences are not supported on a given system,
designated sequences are not portable between unipro-
cessors and multiprocessors. The compiler must gener-
ate a different code sequence for each.

More generally, the use of a designated sequence
requires a strong alliance between the compiler and
the operating system, since changes in the way that
one handles atomic operations must be reflected in the
other. The global design properties of the Taos oper-
ating system make this linkage feasible, however. The
crucial property of Taos is that both the kernel and
its multithreaded clients are written in Modula-2-|-. In
this context, the kernel and the compiler can cooperate
closely to support fast mutual exclusion using desig-
nated inlined sequences. In contrast, for Mach, which is

not intended to be used with any one language and any
one compiler, such a close alliance between the compiler
and the operating system kernel is not feasible.

4 Kernel design considerations

Section 3 described two kernel techniques that support
fast mutual exclusion with restartable atomic sequence.
Tbs implications of these techniques for the inner work-
ings of the kernel depend both on the exact technique
chosen (explicit registration, or designated sequences)
and on the design details of the specific kernel involved.
In this section we discuss some of these implications.

as those that manipulate wait-free data structures [Her-
lihy 91], as well as the more conventional Tesi-And-Set.

The user-level approach is not without problems,
however. TYansferring first to a fixed instruction se-
quence, and then to the suspended instruction involves
more complexity and overhead than the simple check
made by the kernel in either of the other two strate-
gies. There is a level of control indirection requiring
that the real return address be saved and restored on
the thread's user-level stack at each suspension. Be-
cause of these problems, and because there is little mo-
tivation to create a clean policy/mechanism separation
when there is only one policy, neither Taos nor Mach
provide for user-level detection.1

4.1 Placement of the PC check

The most obvious question about kernel structure is:
when should the kernel check/adjust the PC of a sus-
pended thread? The two points at which the thread can
be checked are when it is first suspended, and when it
is about to be resumed. One could consider intermedi-
ate points, but they are less natural than either point
where the kernel already has the thread in hand.

When using designated sequences, checking the PC
can cause a page fault since it involves reading arbitrary
user memory. If the kernel path leading to suspension
is restricted in its ability to incur additional faults, as
it is in Taos and many other systems, early checking
of the PC with designated sequences can be problem-
atic. Checking the PC late solves this problem, since
there are generally fewer restrictions on kernel excep-
tions when coming out of a context switch.

In Mach, the PC is checked when the thread is sus-
pended rather than when it returns to user level. Since
only the PC, but not its contents, are inspected, there
is no concern about touching user memory at inoppor-
tune times. The check is done early because the return
PC and reason for entry into the kernel are conveniently
available at that point.

Detection at user level

Explicit registration and designated sequences place
with the kerne! the responsibility for detecting and cor-
recting atomicity violations. An alternative approach
places that responsibility with the application itself:
whenever a suspended thread is resumed by the kernel,
it returns to a fixed user-level sequence that determines
if the thread was suspended within a restartable atomic
sequence. If co, the user-level recovery code branches
to the beginning of the sequence, otherwise it branches
to the suspended instruction.

User-level detection is attractive because the kernel
provides only the mechanism to ensure atomicity. The
policy lies with the application. Since the kernel is not
involved in either detection or correction, those pro-
cesses can be made as rich as necessary to satisfy the
atomicity constraints of any instruction sequence, such

4.2 Mutual exclusion in the kernel
The kernel is itself a client of thread management facil-
ities in both Mach and Taos. It is tempting to regard
the kernel's ability to disable interrupts as a sweeping
solution to the mutual exclusion problem on a unipro-
cessor. Mach implicitly adopts this approach as the ker-
nel is non-preemptive, but is compiled for uniprocessors
with all low-level synchronization operations removed.
The Taos kernel, however, is preemptive, and uses des-
ignated sequences just as applications do. There are
two reasons for this. The first is a minor performance
gain, since explicit disabling and reenabling of inter-
rupts would more than double the cost of synchroniza-
tion operations. The second reason is a desire to use
the same Modula-2-|- compiler for all code, whether it
be user code or kernel code.

The use of restartable atomic sequences in both user
programs and the kernel raises the question of system
structuring due to potential recursion. Two events, a
page fault or a thread preemption, can trigger a thread
switch in the middle of a restartable atomic sequence.
Since the sequence may be in either user or kernel code,
there are then four events that must be considered in
the light of recursion: user page fault, user preemp-
tion, kernel page fault, and kernel preemption. The
kernel uses mutexes while handling these events, so it
is important to ensure that recursion does not lead to
deadlock. For example, a thread could incur a user
page fault, be preempted while handling it in the ker-
nel, and upon resuming from the preemption, incur a
second page fault when trying to do its PC check. If
the preemption happened while holding a lock in the
virtual memory system, the recursion could cause the
thread to deadlock with itself.

The problem here is that careless ordering of the
PC check could lead to mutual recursion between the
thread scheduler and the virtual memory system. Such

1 At CMU, we rely on user-level restart in a preemptive corou-
tine package for Unix systems that is used in teaching an under-
graduate operating systems course. We examine the interrupted
PC within the Unix signal handler, and roll it back if necessary.
With this, we avoid disabling and enabling Unix signals during
every synchronization ooeration.

problems are avoided in Taos because the system is
structured to impose a strict ordering on the four events
listed above. The handling of any event can cause only
lower-level events. A ■. page fault can incur kernel
page faults and kerne: mptions, but a kernel pre-
emption (including tht check at restart) can not
incur kernel page faults, resuming from a user pre-
emption, by contrast, is allowed to incur page faults.
By consistently ordering the PC checks, Taos is able
to use restartable atomic sequences at all levels of the
system without risk of deadlock or endless recursion.

5 The performance of three
software techniques for mu-
tual exclusion

In this section we compare tie performance of
restartable atomic sequences, ker.el emulation and
software reservation on a RISC-based DECstation
5000/200 running the Mach 3.0 kernel (version MK42)
and CMU's Unix server (version UX23) [Golub et al.
90]. The DECstation 5000/200 has a 25 Mhz MIPS
R3000 processor which does not support atomic read-
modify-write memory accesses in hardware.

We discuss performance at three levels. First, we
examine the basic overhead of the various mechanisms.
Next, we examine their effect on the performance of
common thread management operations. Finally, we
take a system-wide perspective and look at the effect
that mutual exclusion overhead has on the performance
of several applications. In brief, we show that:

• Using restartable atomic sequences instead of
kernel-emulation, the performance of multi-
threaded applications can be improved substan-
tially.

• Even single threaded applications, because they
deal with multithreaded operating system servers,
can benefit indirectly from inexpensive mutual ex-
clusion.

• Thread suspensions occur much less frequently
than atomic operations, justifying the small
amount of extra .work done during thread switch
in order to improve the performance of atomic op-
erations.

• Restartable atomic sequences are almost never in-
terrupted, validating the optimistic approach.

Although we have not collected detailed performance
information in Taos, we believe that the results would
be similar.

5.1 Microbenchmarks

We compare the performance of the three software-
based mutual exclusion mechanisms with a test that

enters a critical section using a Test-And-Set lock, in-
crements a counter, and leaves the critical section by
clearing the Test-And-Set lock. The test uses only one
thread, so the Test-And-Set always succeeds. Conse-
quently, we are not measuring the performance of the
thread management system itself (context switching,
scheduling, etc.), but rather that of the basic proces-
sor architecture, memory system and mutual exclusion
mechanism. The update to the counter is included so
as to model a real critical section: interactions between
the atomic operation, the code in the critical section,
and the memory system should be considered when
evaluating a mutual exclusion mechanism. For exam-
ple, a scheme requiring several writes will not work well
on a memory system with a write-through cache and a
shallow write-buffer [Bershad et al. 92].

The elapsed times to execute the various software-
based mutual exclusion algorithms are shown in Ta-
ble 1. The values in the table were determined by ex-
ecuting the test in a tight loop 1,000,000 times, com-
puting the average elapsed time of each pass through
the loop, and subtracting off the loop overhead. There
was only negligible variation in times over several runs
of the benchmarks on an unloaded system.

Software Mechanism Time
(/isecs)

Restartable Atomic Sequences (branch) .64
Restartable Atomic Sequences (inline) .51
Kernel Emulation 4.15
Software-reservation (a) 1.51
Software-reservation (b) 1.16

Table 1: Microbenchmark results for the DECstation
5000/200.

Restartable atomic sequences were measured with
branches to an explicitly registered sequence, and also
with inlined code. The performance difference between
the two approaches is due to the subroutine linkage
overhead on the MIPS. Kernel emulation and both
reservation schemes use out-of-line calls to implement
the atomic operations. For these mechanisms, the over-
head is sufficiently high that there is little to be gained
by inlining. Software-reservation protocol (a) is an im-
plementation of Lamport's fast mutual exclusion al-
gorithm in which each lock is represented by a data
structure containing an owner and a reservation field
(one word each), and an array of booleans indexed by
a thread identifier. It is the most direct implementation
of the algorithm, but suffers from the high storage re-
quirements described in Section 2.2. Protocol (b) uses
Lamport's algorithm to implement the "meta" mutual
exclusion function shown in Figure 2. Protocol (b), de-
spite an increase in the number of memory accesses over
Protocol (a), executes more quickly on the DECstation
5000/200 because of the cost of having to compute a
thread's unique identifier and the address of its "busy"
bit. With protocol (a), these must be computed on en-
try anrfexit to a critical section, whereas with protocol

(b), they need only be computed on entry. A dedi-
cated per-thread hardware register would reverse this
disparity.

The table shows that kernel emulation is by far the
most expensive approach; the trap and exception dis-
patch in the kernel are the main sources of overhead.
Both software reservations schemes are faster than ker-
nel emulation, but much slower than restartable atomic
sequences due to the number of instructions and mem-
ory accesses required. Despite their better perfor-
mance, both reservation strategies have practical prob-
lems that make them difficult to use (see Section 2.2).
Consequently, in the rest of this section, we restrict our
comparisons to systems using only restartable atomic
sequences and kernel emulation.

5.2 Thread management overhead
Mach's user-level thread management system, C-
Threads, like other thread management packages [An-
derson et al. 89, Bershad et al 88, Weiser et al. 89],
relies heavily on simple atomic operations to implement
higher level facilities such as threads, locks and condi-
tion variables. We looked at several benchmarks to
understand the influence that atomic operations have
on the performance of these higher level facilities using
two different versions of C-Threads. One version re-
lies on kernel emulation for synchronization. The other
uses restartable atomic sequences. The benchmarks,
which contain the kinds of operations typically found
in multithreaded programs, are:

• Spinlock. One thread repeatedly acquires and re-
leases a spinlock. The spinlock is implemented
with a Test-And-Set sequence.

• Mutexlock. One thread repeatedly acquires and
releases a relinquishing mutex. Unlike a spinlock,
if a thread tries to acquire a held mutex, it relin-
quishes the processor. The mutex is implemented
using a spinlock and a queue of Waiting threads.

• Forktest. Threads are recursively forked in suc-
cession; i.e., thread 1 forks thread 2 which forks
thread 3, etc.. After forking, a thread immediately
terminates.

• Pingpong. Two threads "pingpong" off one an-
other in a tight loop, using a mutex and condition
variable to execute alternately.

The performance of these benchmarks running on a
DECstätion 5000/200 is shown in Table 2. Each entry
in the table represents the elapsed time per operation
(i.e, one spinlock acquire and release, one mutex lock
and unlock, one fork and exit, one ping and pong). The
table shows that the performance of thread manage-
ment operations depends upon the performance of the
underlying synchronization mechanism. When using
kernel emulation for Test-And-Set, thread management

functions spend the majority of their time in the ker-
nel executing synchronization code. With restartable
atomic sequences, synchronization overhead becomes
negligible. Even PingPong, with its profligate synchro-
nization (26 Test-And-Seis per cycle), spends less than
10% of its time synchronizing when using restartable
atomic sequences.

Benchmark Emulation R.A.S.
(/isecs) (/isecs)

Spinlock 4.3 .58
MutexLock 4.6 .91
ForkTest 43.7 23.8
PingPong 230.8 115.2

Table 2: The effect of synchronization on thread man-
agement overhead under Mach 3.0 on a DECstation
5000/200.

5.3 Application performance

The microbenchmarks and thread management bench-
marks indicate that restartable atomic sequences can
have a large effect on individual operations. Ultimately,
though, we are concerned with performance system-
wide. In this subsection we examine the effect that
restartable atomic sequences have on the performance
of several applications running on Mach 3.0. The ap-
plications are:

• text-format. Format a version of this paper using
MEX.

• afs-bench. A script of file system intensive pro-
grams such as copy, compile and search that
execute out of the Andrew File System [Satya-
naranyanyan et al. 85].

• parthenon-n. A resolution-based theorem prover
that uses n threads to exploit or-parallelism [Dose
et al. 89].

• procon-64. A producer-consumer application in
which one consumer thread coordinates with one
producer thread to read data from a large file into
a 64 byte buffer.

Table 3 shows the behavior of the applications when
run under two different versions of the operating sys-
tem. The columns labeled "Emul" reflect runs using
kernel emulation for the application and for Mach's
user-level Unix server. The columns labeled "R.A.S."
reflect runs using restartable atomic sequences for the
applications and for the Unix server. Each program
was run several times and the average values for mea-
surements taken during the runs are given in the table.

Restartable atomic sequences have the greatest ef-
fect on applications that use threads explicitly, such as
Parthenon with 1 or 10 threads, and procon-64 which

Program Elapsed Emulation Restarts Thread
Time (sees) Traps Suspensions

Emul. R.A.S. Emul. R.A.S.
text-format 1Ö.1 9.8 57305 0 295 317
afs-bench 239.4 231.1 2191276 42 8856 9876
Parthenon-1 25.8 18.5 1395534 4 412 354
Parthenon-10 26.1 18.6 1576714 7 610 499
procon-64 30.4 15.7 2738168 4 106969 91494

Table 3: Effect of synchronization overhead on application performance.

improve by about 30% and 50% respectively. Single-
threaded "vanilla Unix" applications also benefit in-
directly through the improved performance of multi-
threaded user-level operating system services. For ex-
ample, the performance of the text-formatter and the
file system benchmarks, which are themselves single
threaded but rely on the multithreaded Unix server,
improves by about 3%.

The column labeled "Emulation Traps" reflects the
number of synchronizations that occurred when atomic
operations were implemented in the kernel. The col-
umn labeled "Restarts" shows the average number of
atomic sequence restarts that had to be performed
when Test-And-Set was implemented with explicit reg-
istration. The restart count demonstrates that the like-
lihood of a thread being suspended during a restartable
atomic sequence is extremely small.

The last two columns show the number of times that
the kernel suspended a thread. For restartable atomic
sequences, it indicates how many times a thread's ex-
ecution state had to be checked to ensure that atomic
operations eventually execute atomically. Comparing
this column to the number of emulation faults justifies
the small amount of extra work required by the restart
strategies whenever a thread is rescheduled. The more
compelling justification, of course, is the reduced exe-
cution time for the applications.

The number of emulation traps can be used
to account for the performance difference between
the two versions of the system. For example,
parihenon-10, with its 1.57 million kernel emulations,
should improve by about 1.57 million x 3.7 /zsecs
(4.3 /isecs-.58 /isecs), or about 5.8 seconds. The actual
improvement is slightly greater than this for two rea-
sons. First, the correlation between elapsed time and
number of emulation traps is neither strictly negative
nor strictly positive. Hence, the number of emulation
traps is only a good, but not exact, predictor of per-
formance improvement. Second, some of the improve-
ment is due to the reduction in scheduling overhead
that comes with a decrease in critical section service
time.

For even very short critical sections (10 to 20 in-
structions) restartable atomic sequences add little ex-
tra overhead, and much of that overhead comes before
the critical section has actually been entered. Conse-
quently, a short critical section remains short, and the
likelihood of the critical section itself being suspended is

small. With kernel emulation, though, each Test-And-
Set takes about 100 instructions, and nearly all are ex-
ecuted with processor interrupts disabled. When con-
trol returns out of the kernel, interrupts are reenabled
and any pending interrupts are delivered. If the de-
livered interrupt causes a preemption, then the thread
that just performed the atomic operation will be de-
scheduled and another thread will run. If that thread
attempts to enter the same critical section, it will find
the Tesi-And-Set variable already set and will relin-
quish its processor to the scheduler.

We looked more closely at parthenon-lO to determine
the influence of inflated critical sections on program
behavior. The program synchronizes often, but most
synchronization operations guard short critical sections
that simply increment a counter, or dequeue an item
from a linked list. In running the program, we counted
the number of times that a thread was unable to en-
ter a critical section because of a lock held by another
(suspended) thread. When using kernel emulation in
Parthenon-10, a thread found a Test-And-Set lock held
about twice as often as with restartable atomic se-
quences.

6 Software vs. hardware sup-
port for mutual exclusion

The lack of hardware support for atomic operations of-
fered the initial motivation to investigate efficient soft-
ware solutions [Anderson et al. 91]. Most processors,
however, do support some type of atomic read-modify-
write instruction. In this section we evaluate the use of
restartable atomic sequences on such processors.

We measured the overhead to acquire and release
a Test-And-Set lock using memory-interlocked instruc-
tions and restartable atomic sequences on eight proces-
sor architectures. The results are shown in Table 4.
For the interlocked cases, the times do not include any
linkage overhead, as the Test-And-Set and subsequent
release instructions can be executed inline. In the cases
of explicit registration, linkage overhead is included for
the Test-And-Set, but not for the release, which can
be inlined. The fourth column of Table 4 shows the
call linkage overhead. Even with the linkage overhead,
restartable atomic sequences are more efficient than
memory-interlocked instructions on the DEC CVAX,

Interlocked Explicit linkage Designated
Processor Instruction Registration Overhead Sequence

(fisecs) (/isecs) (/isecs) (/isecs)
DEC CVAX 2.8 2.2 .6 1.6
Motorola 68030 1.1 2.0 .8 1.2
Intel 386 1.0 1.6 .7 .9
Intel 486 .7 .6 .3 .3
Intel 860 .3 .4 .2 .2
Motorola 88000 .9 .3 .1 .2
Sun SPARC .8 1.0 .3 .7
HP 9000 Series 700 .94 .17 .08 .09

Table 4: Hardware and software overheads of Test-And-Sei using different implementation strategies.

the Intel 486, the Motorol- MO, and the Hewlett
Packard 9000 (PA-RISC) Sen .. 700.

Using designated sequences, the software approach
outperforms the hardware in all cases (subtract the
overhead of linkage from that of an explicitly registered
sequence). As processor speeds increase relative to bus
and memory speeds, we expect the optimistic software
solution to continue its dominance. For interlocked in-
structions to outperform optimistic software techniques
on uniprocessors, they must be implemented so that
they exploit the simpler single processor case.

The table demonstrates that one should not neces-
sarily rely on an architecture and memory system to
provide functions that may be provided more cheaply
with a combination of operating system, compiler, and
runtime support.

gins a mulH-instruction atomic sequence -with a special
instruction that sets a bit in the processor status word,
disables interrupts, and locks the bus. The bit is cleared
and the bus lock is automatically released on the next
write to memory, after 32 cycles, or on a processor ex-
ception. The release on write covers the common case
of a successful read-modify-write sequence. The kernel
must check the bit on every transfer from the kernel
to user level. If the bit is set, the kernel must back
the thread up to the special instruction. Despite the
i860's hardware support for restartable sequences (the
bit in the processor status word eliminates the need
to perform explicit registration or instruction stream
inspection after every context switch), it offers little
performance advantage over software techniques on a
uniprocessor (see Table 4).

7 Related work
The Trellis/Owl object-oriented language [Moss &
Köhler 87] used optimistic synchronization techniques
similar to those described in this paper. The Owl
runtime system provided concurrency among several
threads sharing a single VMS process, and used soft-
ware interrupts from VMS to drive its multiplexing. It
provided atomicity for its own needs and those of user
programs by backing out of certain registered runtime
routines, and by emulating forward through designated
sequences. The most important difference between Owl
and the work described in this paper is our integration
of restartable atomic sequences with the operating sys-
tem kernel.

User-level detection and restart is similar to the ap-
proach taken in [Anderson et al. 92] to support user-
level thread management on shared memory multipro-
cessors. In that system, when a thread is preempted
inside a critical section, it is immediately resumed not
where it left off, but within code that gives the thread
management system the opportunity to recover from
the preemption. This machinery is sufficient for imple-
menting restartable atomic sequences on a, uniproces-
sor.

The Intel i860 processor [Intel860 89] provides hard-
ware support for restartable sequences. A thread be-

8 Conclusions

Restartable atomic sequences represent a "common
case" approach to mutual exclusioi on a uniprocessor.
In the common case, ai atomic operation tuns unin-
terrupted. The uncofTimor- case can be detect d after
it occurs and can be handled by means of a simple re-
covery process. As such, restartable atonii" sequences
are appropriate for uniprocessors that do not support
memory-interlocked atomic instructions. Moreover, on
processors that do have hardware support for syn-
chronization, better performance may be possible with
restartable atomic sequences.

Acknowledgements

Richard Draves, Hank Levy, Chris Maeda, Dan Stodoi-
sky and Terri Watson provided valuable feedback on
earlier drafts of this paper. The use of restartable
atomic sequences in Taos benefitted from discussions
with Butler Lampson and Mike Burrows. The system
structuring ideas in Section 4 were clarified during dis-
cussions with Jerry Saltzer.

References
[\ccetta et al. 86] Accetta, M. J., Baron, R. V., Bolosky,

W., Golub, D. B., Rashid, R. F., Tevanian, Jr.,
A., and Young, M. W. Mach: A New Kernel
Foundation for UNIX Development. In Proceed-
ings of the Summer 1986 USENIX Conference,
pages 93-113, July 1986.

[Anderson et al. 89] Anderson, T., Lazowska, •]., and Levy,
H. The Performance Implications of Thread
Management Alternatives for Shared-Memory
Multiprocess .s. IEEE Transactions on Com-
puters, 38(12):1631-1644, December 1989.

[Anderson et al. 91] Anderson, T., Levy, H., Bershad, B.,
and Lazowska, E. The Interaction of Architec-
ture and Operating System Design. In Proceed-
ings of the Fourth Symposium on Architectural
Support for Programming Languages and Oper-
ating Systems (ASPLOS), April 1991.

[Anderson et al. 92] Anderson, T. E., Bershad, B. N., La-
zowska, E. D., and Levy, H. M. Scheduler Acti-
vations: Effective Kernel Support for the User-
Level Management of Parallelism. A CM Trans-
actions on Computer Systems, 9(1), February
1992.

[Bershad et al. 88] Bershad, B. N , Lazowska, E. D., and
Levy, H. M. PRESTO: A System for Object-
Oriented Parallel Programming. Software:
Practice, and Experience, 18(8):713-732, August
1988.

[Bershad et al. 92] Bershad, B. N., Draves, R. P., and
Forin, A. Using Microbenchmarks to Evalu-
ate System Performance. In Proceedings of the
Third Workshop on Workstation Operating Sys-
tems, April 1992.

[Birrcll 91] Birrell, A An Introduction to Programming
with Threads. Prentice Hall, 1991.

[Böse et al. 89] Bose, S., Clarke, E., Long, D., and
Michaylov, S. Parthenon: A Parallel Theorem
Prover for Non-Horn Clauses. In Proceedings of
the Fourth Annual Symposium on Logic in Com-
puter Science, 1989.

(Cheriton 88] Cheriton, D. R. The V Distributed Sys-
tem. Communications of the ACM, 31(3):314-
333, March 1988.

[Cooper & Draves 88] Cooper, E. C. and Draves, R. P.
C threads. Technical Report CMU-CS-88-54,
School of Computer Science, Carnegie Mellon
University, February 1988.

[Dijkstra 68a] Dijkstra, E. W. The Structure of the "THE"
Multiprogramming System. Communications of
the ACM, 11(5), May 1968.

[Dijkstra 68b] Dijkstra, E. W. Cooperating Sequential Pro-
cesses, pages 43-112. Academic Press, New
York, 1968.

[Clew ii Hwu 91] Clew, A. and Hwu, W. A Feature Tax-
onomy and Survey of Synchronization Primi-
tive Implementations. Technical Report UILU-
ENG-91-2211, Center for Reliable and High-
Performance Computing, University of Illinois
at Urbana-Champaign, February 1991.

[Golub et al. 90] Golub, D., Dean, R., Forin, A., and
Rashid, R. Unix as an Application Program. In
Proceedings of the Summer 1990 USENIX Con-
ference, pages 87-95, June 1990.

[Herlihy 91] Herlihy, M. Wait-free Synchronization.
ACM Transactions on Programming Languages,
13(1), January 1991.

[Intel386 90] 386 Programmer's Reference Manual. Intel,
Mt. Prospect, IL, 1990.

[Intel860 89] i860 64-bit Microprocessor Programmer's Ref-
erence Manual. 1989.

[Kane 87] Kane, G. MIPS R2000 RISC Architecture.
Prentice Hall, Englewood Cliffs, N.J., 1987.

[Lamport 87] Lamport, L. A Fast Mutual Exclusion Al-
gorithm. ACM Transactions on Computer St/s-
tem«, 5(1):1-11, February 1987.

[Leonard 87] Leonard, T. VAX Architecture Reference
Manual. Digital Equipment Corporation, 1987.

[Moss & Köhler 87] Moss, J. and Kohler, W. Concurrency
Features for the Trellis/Owl Language. In Eu-
ropean Conference on Object-Oriented Program-
ming, June 1987. Appears in Springer-Verlag's
Lecture Notes in Computer Science #276.

[Motorola 88100 88] MCS 88100 RISC Microprocessor
User's Manual. Phoenix, AZ, 1988.

[Mullender et al. 90] Mullender, S. J., van Rossum, G.,
Tanenbaum, A. S., van Renesse, R., and van
Staveren, H. Amoeba: A Distributed Operating
System for the 1990s. IEEE Computer Maga-
zine, 23(5):44-54, May 1990.

[Peterson 81] Peterson, G. Myths About the Mutual Exclu-
sion Problem. Information Processing Letters,
12(1), June 1981.

[Rovner et al. 85] Rovner, P., Levin, R., and Wick, J. On
Extending Modula-2 for Building Large, Inte-
grated Systems. Technical Report # 3, Digi-
tal Equipment Corporation's Systems Research
Center, Palo Alto, California, January 1985.

[Rozier et al. 88] Rozier, M., Abrossimov, V., Armand, F.,
Boule, I., Giend, M., Guillemont, M., Her-
rmann, F., Leonard, P., Langlois, S., and
Neuhauser, W. The Chorus Distributed Oper-
ating System. Computing Systems, 1(4), 1988.

[Satyanaranyanyan et al. 85] Satyanaranyanyan,
M., Howard, J., Nichols, D., Sidebotham, R.,
and Spector, A. The ITC Distributed File Sys-
tem: Principles and Design. In Proceedings of
the 10th ACM Symposium on Operating Systems
Principles, pages 35-50, December 1985.

[Thacker et al. 88] Thacker, C. P., Stewart, L. C, and Sat-
terthwaite, Jr., E. H. Firefly: A Multiprocessor
Workstation. IEEE Transactions on Computers,
37(8):909-920, August 1988.

[Weiser et al. 89] Weiser, M., Demers, A., and Hauser, C.
The Portable Common Runtime Approach to
Interoperability. In Proceedings of the 12th
ACM Symposium on Operating Systems Prin-
ciples, pages 114-122, December 1989.

Keywords: Mutual exclusion, architecture, performance, microkernels, memory system, threads

